European Physical Journal C: Particles and Fields (Aug 2020)
Charged particle dynamics in the surrounding of Schwarzschild anti-de Sitter black hole with topological defect immersed in an external magnetic field
Abstract
Abstract In this paper, geodesic motion of the charged particles in the vicinity of event horizon of Schwarzschild anti-de-Sitter black hole (BH) with topological defects has been investigated. Weakly magnetized environment is considered in the surrounding of BH which only effects the motion of the particles and doesn’t effect the geometry of the BH. Hence, particles are under the influence of gravity and electromagnetic forces. We have explored the effect of magnetic field on the trajectories of the particles and more importantly on the position of the innermost stable circular orbit. It is observed that the trajectories of the particles in the surrounding of BH are chaotic. Escape conditions of the particles under the influence of gravitomagnetic force are also discussed. Moreover, the escape velocity of particles and its different features have been investigated in the presence and absence of magnetic field. Effect of dark energy on the size of event horizon, mass of the BH and stability of the orbits of the particles have also been explored in detail. These studies can be used to estimate the power of relativistic jets originated from the vicinity of BH.