C (Aug 2020)
Catalysts for Methane Steam Reforming Reaction: Evaluation of CeO<sub>2</sub> Addition to Alumina-Based Washcoat Slurry Formulation
Abstract
The effect of the addition of CeO2 to alumina-based washcoat slurry formulation on the methane steam reforming (MSR) reaction was investigated. Five Al2O3-CeO2-based washcoat slurries, differing from each other in the Al2O3/CeO2 ratio (nominal ratio equal to ∞, 0.042, 0.087, 0.250, 0.667) were prepared, dried and calcined; the resulting powders were loaded with nickel as an active metal and the obtained catalysts were tested in MSR reaction. Five cylindrical silicon carbide (SiC) monoliths were washcoated with the prepared slurries and their mechanical resistance was evaluated through the ultrasound adherence test. The activity tests results highlighted the best performance in terms of methane conversion and hydrogen selectivity of the powder catalyst, with the Al2O3/CeO2 percentage nominal ratio equal to 0.042. A structured catalyst was finally prepared by loading a SiC monolith with the most active catalytic formulation and tested in MSR reaction. The performance of the structured catalyst was evaluated in terms of methane conversion and its stability was verified in a time-on-stream test, which allowed for the evaluation of the carbon formation rate; furthermore, its activity was characterized by the estimation of the kinetic parameters. The results highlighted the beneficial effect of ceria addition on the catalytic activity; moreover, compared with data of the literature, the calculated carbon formation rate demonstrated a good resistance of the catalyst to coke formation.
Keywords