Jisuanji kexue yu tansuo (May 2024)

Survey of Research on SMOTE Type Algorithms

  • WANG Xiaoxia, LI Leixiao, LIN Hao

DOI
https://doi.org/10.3778/j.issn.1673-9418.2309079
Journal volume & issue
Vol. 18, no. 5
pp. 1135 – 1159

Abstract

Read online

Synthetic minority oversampling technique (SMOTE) has become one of the mainstream methods for dealing with unbalanced data due to its ability to effectively deal with minority samples, and many SMOTE improvement algorithms have been proposed, but very little research existing considers popular algorithmic-level improvement methods. Therefore a more comprehensive analysis of existing SMOTE class algorithms is provided. Firstly, the basic principles of the SMOTE method are elaborated in detail, and then the SMOTE class algorithms are systematically analyzed mainly from the two levels of data level and algorithmic level, and the new ideas of the hybrid improvement of data level and algorithmic level are introduced. Data-level improvement is to balance the data distribution by deleting or adding data through different operations during preprocessing; algorithmic-level improvement will not change the data distribution, and mainly strengthens the focus on minority samples by modifying or creating algorithms. Comparison between these two kinds of methods shows that, data-level methods are less restricted in their application, and algorithmic-level improvements generally have higher algorithmic robustness. In order to provide more comprehensive basic research material on SMOTE class algorithms, this paper finally lists the commonly used datasets, evaluation metrics, and gives ideas of research in the future to better cope with unbalanced data problem.

Keywords