PLoS ONE (Jan 2020)

Disproportionate positive feedback facilitates sense of agency and performance for a reaching movement task with a virtual hand.

  • Raviraj Nataraj,
  • David Hollinger,
  • Mingxiao Liu,
  • Aniket Shah

DOI
https://doi.org/10.1371/journal.pone.0233175
Journal volume & issue
Vol. 15, no. 5
p. e0233175

Abstract

Read online

This study investigated the generalized effects of positive feedback (PF) versus negative feedback (NF) during training on performance and sense of agency for a reach-to-touch task with a virtual hand. Virtual reality (VR) is increasingly employed for rehabilitation after neuromuscular traumas such as stroke and spinal cord injury. However, VR methods still need to be optimized for greater effectiveness and engagement to increase rates of clinical retention. In this study, we observed that training with disproportionate PF subsequently produced greater reaching performance (minimizing path length) and greater agency (perception of control) than with disproportionate NF. During PF training, there was also progressive increase in agency, but conversely a decrease in performance. Thus, the increase in performance after training may not be due to positively bolstered learning, but rather priming higher confidence reflected in greater agency. Agency was positively measured as compression in perceived time-intervals between the action of touch to a sound consequence, as standard with intentional binding paradigms. Positive feedback desirably increased agency (~180 msec) and reduced path length (1.8 cm) compared to negative feedback, which itself showed insignificant, or neutral, effects. Future investigations into optimizing virtual reality paradigms for neuromotor rehabilitation should consider agency as a driving factor for performance. These studies may serve to optimize how feedback is better presented with performance results for complex motor learning. Investigators should also ponder how personal characteristics, both cognitive and physical, may further affect sensitivity to feedback and the rate of neuromotor rehabilitation.