IET Biometrics (Jan 2024)
On the Potential of Algorithm Fusion for Demographic Bias Mitigation in Face Recognition
Abstract
With the rise of deep neural networks, the performance of biometric systems has increased tremendously. Biometric systems for face recognition are now used in everyday life, e.g., border control, crime prevention, or personal device access control. Although the accuracy of face recognition systems is generally high, they are not without flaws. Many biometric systems have been found to exhibit demographic bias, resulting in different demographic groups being not recognized with the same accuracy. This is especially true for facial recognition due to demographic factors, e.g., gender and skin color. While many previous works already reported demographic bias, this work aims to reduce demographic bias for biometric face recognition applications. In this regard, 12 face recognition systems are benchmarked regarding biometric recognition performance as well as demographic differentials, i.e., fairness. Subsequently, multiple fusion techniques are applied with the goal to improve the fairness in contrast to single systems. The experimental results show that it is possible to improve the fairness regarding single demographics, e.g., skin color or gender, while improving fairness for demographic subgroups turns out to be more challenging.