Materials (Sep 2020)

Structure and Photoluminescence Properties of Rare-Earth (Dy<sup>3+</sup>, Tb<sup>3+</sup>, Sm<sup>3+</sup>)-Doped BaWO<sub>4</sub> Phosphors Synthesized via Co-Precipitation for Anti-Counterfeiting

  • Jae-yong Jung,
  • Juna Kim,
  • Young-Seok Shim,
  • Donghyun Hwang,
  • Chang Sik Son

DOI
https://doi.org/10.3390/ma13184165
Journal volume & issue
Vol. 13, no. 18
p. 4165

Abstract

Read online

Barium tungstate (BaWO4) powders with various sintering temperatures, and BaWO4:Dy3+ phosphor samples with concentrations of different rare-earth (RE) activator ions (Dy3+, Sm3+, Tb3+) were prepared through co-precipitation. The structural, morphological, and photoluminescent characteristics of barium tungstate phosphors depend on the concentration of RE ions. The crystallographic characteristics of the synthesized BaWO4 were analyzed using X-ray diffraction (XRD) patterns. The size and shape of the crystalline particles were estimated based on images measured with a field emission scanning electron microscope (FE-SEM). As the sintering temperature of the BaWO4 particles increased from 400 °C to 1000 °C, the size of the particles gradually increased and showed a tendency to clump together. In the sample doped with 7 mol % Dy3+ ions, the intensity of all emission bands reached their maximum. The emission spectra of the RE3+-doped BaWO4 powders by excitation at 325 nm were composed of yellow (Dy3+), red (Sm3+), and green (Tb3+) band at 572, 640, and 544 nm. This indicates that most of the RE3+ ions absorbed the position without reversal symmetry in the BaWO4 lattice. These results propose that strong emission intensity and tunable color for the phosphors can be accomplished by rare-earth doped host with an suitable quantity. In addition, the phosphor thin films, having high transparency from aqueous colloidal solutions, were deposited on banknotes, and it is considered whether it is suitable for anti-counterfeiting applications.

Keywords