Aqua (May 2023)
Securing drinking water supply in smart cities: an early warning system based on online sensor network and machine learning
Abstract
To enhance the quality of life and ensure sustainability in crowded cities, safe management of drinking water using cutting-edge technologies is a priority. This study developed an intelligent early warning system (EWS) for alarming and controlling risks from bacteria and disinfection byproducts in a drinking water distribution system (DWDS), named BARCS (Bacterial Risk Controlling System). BARCS adopts an artificial intelligence (AI) approach to data-driven prediction and considers total chlorine (TCl) concentration as the pivot indicator for risk identification and control. First, the machine learning-based AI model in BARCS can provide a reliable prediction of TCl concentration in a DWDS, with an average R2 of 0.64 for the validation set, while offering great flexibility for BARCS to adapt to various conditions. Second, TCl concentration was proven to be a good indicator of bacterial risk in a DWDS, as well as a cost-effective surrogate variable to assess disinfection byproduct risk. Third, the robustness analysis demonstrates that with state-of-the-art water quality monitoring technologies, online implementation of BARCS in real-world settings is feasible. Overall, BARCS represents a promising solution to the safe management of drinking water in future smart cities. HIGHLIGHTS BARCS predicts and regulates bacterial risk in pipelines.; TCl prediction module harvests an average R2 of 0.64 for the validation set.; The relationship between TCl and CFU is quantified.; Online implementation of BARCS in real-world settings is feasible.;
Keywords