Shock and Vibration (Jan 2021)

Pressure Relief Mechanism of Directional Hydraulic Fracturing for Gob-Side Entry Retaining and Its Application

  • Zhang Xiao,
  • Kang Hongpu

DOI
https://doi.org/10.1155/2021/6690654
Journal volume & issue
Vol. 2021

Abstract

Read online

In order to make clear the pressure relief mechanism and application effect of directional hydraulic fracturing for gob-side entry retaining, the directional hydraulic fracturing was carried out by 400 m in haulage gateway remaining along the goaf in 50108 working face of Hejiata Coal Mine. Taking this as the engineering background, a mechanical model of roof cutting was established and the pressure relief mechanism was clarified. The theoretical research shows that it is the moments of gravity FG of the curved triangular roof plate at the face end, the pressure q of the overlying soft rock, and the transverse force TCB in the “voussoir beam” structure to the left endpoint of the triangular block, that is, MFG, Mq, and MTCB, which determines the roadside supporting resistance. Hydraulic fracturing can reduce the lateral cantilever length of the basic roof, thus greatly reducing the values of MFG, MTCB, and Mq, and significantly reduce the roadside supporting resistance. The field test shows that the directional hydraulic fracturing technology can effectively improve the stress environment of the face end and reduce the deformation of the roadway, and it has a good application effect on the gob-side entry retaining.