Energies (Feb 2023)

The Pyrolysis Behaviors of Blended Pellets of Pine Wood and Urea-Formaldehyde Resin

  • Xiaoteng Li,
  • Siyi Luo,
  • Zongliang Zuo,
  • Weiwei Zhang,
  • Dongdong Ren

DOI
https://doi.org/10.3390/en16042049
Journal volume & issue
Vol. 16, no. 4
p. 2049

Abstract

Read online

TG-FTIR and PY-GC/MS were used to analyze the pyrolysis behaviors of pine wood, urea-formaldehyde resin (UF resin) and their blended pellets. The pyrolysis process was divided into three stages: water evaporation, devolatilization and pyrolysis residue decomposition. During the pyrolysis process of the blended pellets, with the increase of the addition ratio of UF resin, the peak value of the weight loss decreased in the decomposition stage of the pyrolysis residue, while the temperature shifted to the low-temperature region. This was mainly due to the structural stability of pyrolytic carbon produced by UF resin, which hindered the thermal decomposition of lignin-produced residues in pine. FTIR showed that CO2 was the main product of pyrolysis. For UF resin, nitrogen compounds accounted for a large proportion. With the addition of UF resin, the nitrogen in the blended pellets increased significantly. Since the synergistic effect promoted the further decomposition of the organic oxygen-containing structure, the NO release was still increased. PY-GC/MS showed that co-pyrolysis produced more nitrogen-containing compounds and promoted the decomposition of macromolecular phenol derivatives, lipids and ketones, resulting in more small-molecule acids and alcohols.

Keywords