Journal of Ginseng Research (Jan 2014)

Protective effect of Korean Red Ginseng extract against Helicobacter pylori-induced gastric inflammation in Mongolian gerbils

  • Minkyung Bae,
  • Sungil Jang,
  • Joo Weon Lim,
  • Jieun Kang,
  • Eun Jung Bak,
  • Jeong-Heon Cha,
  • Hyeyoung Kim

DOI
https://doi.org/10.1016/j.jgr.2013.11.005
Journal volume & issue
Vol. 38, no. 1
pp. 8 – 15

Abstract

Read online

Helicobacter pylori-induced gastric inflammation includes induction of inflammatory mediators interleukin (IL)-8 and inducible nitric oxide synthase (iNOS), which are mediated by oxidant-sensitive transcription factor NF-κB. High levels of lipid peroxide (LPO) and increased activity of myeloperoxidase (MPO), a biomarker of neutrophil infiltration, are observed in H. pylori-infected gastric mucosa. Panax ginseng Meyer, a Korean herb medicine, is widely used in Asian countries for its biological activities including anti-inflammatory efficacy. The present study aims to investigate whether Korean Red Ginseng extract (RGE) inhibits H. pylori-induced gastric inflammation in Mongolian gerbils. One wk after intragastric inoculation with H. pylori, Mongolian gerbils were fed with either the control diet or the diet containing RGE (200 mg RGE/gerbil) for 6 wk. The following were determined in gastric mucosa: the number of viable H. pylori in stomach; MPO activity; LPO level; mRNA and protein levels of keratinocyte chemoattractant factor (KC, a rodent IL-8 homolog), IL-1β, and iNOS; protein level of phospho-IκBα (which reflects the activation of NF-κB); and histology. As a result, RGE suppressed H. pylori-induced mRNA and protein levels of KC, IL-1β, and iNOS in gastric mucosa. RGE also inhibited H. pylori-induced phosphorylation of IκBα and increases in LPO level and MPO activity of gastric mucosa. RGE did not affect viable H. pylori colonization in the stomach, but improved the histological grade of infiltration of polymorphonuclear neutrophils, intestinal metaplasia, and hyperplasia. In conclusion, RGE inhibits H. pylori-induced gastric inflammation by suppressing induction of inflammatory mediators (KC, IL-1β, iNOS), MPO activity, and LPO level in H. pylori-infected gastric mucosa.

Keywords