Green Energy & Environment (Jun 2022)

A facial synthesis of nitrogen-doped reduced graphene oxide quantum dot and its application in aqueous organics degradation

  • He Zhao,
  • Juehua Wang,
  • Zhuangjun Fan,
  • Yongbing Xie,
  • Di Zhang,
  • Shanshan Sun,
  • Yi Zhang,
  • Hongbin Cao

Journal volume & issue
Vol. 7, no. 3
pp. 440 – 448

Abstract

Read online

N-doped reduced graphene oxide quantum dots (N-rGQDs) have attracted more and more attention in efficient catalytic degradation of aqueous organic pollutants. However, the synthesis of N-rGQDs is generally a complex and high energy required process for the reduction and N-doping steps. In this study, a facile and green fabrication approach of N-rGQDs is established, based on a metal-free Fenton reaction without additional energy-input. The N structures of N-rGQDs play a significant role in the promotion of their catalytic performance. The N-rGQDs with relatively high percentage of aromatic nitrogen (NAr-rGQDs) perform excellent catalytic activities, with which the degradation efficiency of pollutant is enhanced by 25 times. Density functional theory (DFT) calculation also indicates aromatic nitrogen structures with electron-rich sites are prone to transfer electron, presenting a key role in the catalytic reaction. This metal-free Fenton process provides a green and cost-effective strategy for one-step fabrication of N-rGQDs with controllable features and potential environmental catalytic applications.

Keywords