International Journal of Biomedicine (Mar 2012)
Rhythminotropic Reactions of Human Myocardium in Ischemic and Rheumatic Heart Diseases against the Background of Amiodarone
Abstract
In human heart failure, Ca2+ homeostasis gets disturbed due to a decrease in the function of the sarcoplasmic reticulum (SR). We studied the differences in the SR function in patients with rheumatic and coronary heart disease, against the background of amiodarone. Cardiac preparations from the atrium of 21 patients with coronary artery disease (CAD) and 14 patients with rheumatic heart disease (RHD) were used in this study. Myocardial strips perfused with oxygenated Krebs-Henzelait solution without and with amiodarone (1 mM/l) at 37°C. The steady state stimulation rate of the muscle strips was 0.5 Hz. The single extraordinary impulse was given as 0.2-1.5 sec after the steady state beat. Then, the first beat after a 4- to 60-sec rest period was evaluated. The extrasystoles of the myocardium in both groups, after long intervals, were decreased after amiodarone treatment. The amplitude of post extrasystoles of amiodarone-treated myocardium showed differences only after long intervals in both groups. Two types of inotropic responses of a failing myocardium after rest periods were observed. Type I post-rest contractions maintained the steady state amplitude after all rests. However, type II was characterized by a reduction in the amplitude of the contractions. Amiodarone treatment of the myocardium showing type I reactions led to an increase in the potentiation after rests, but showed no effect on the reaction of the muscle with the type II response. The results suggested that SR dysfunction was different in CAD and RHD. The realization of the therapeutic effect of amiodarone was found to be dependent on the functional activity of the SR.