BMC Evolutionary Biology (May 2011)

The evolution of reproductive isolation in a simultaneous hermaphrodite, the freshwater snail <it>Physa</it>

  • Lydeard Charles,
  • Wethington Amy R,
  • Dillon Robert T

DOI
https://doi.org/10.1186/1471-2148-11-144
Journal volume & issue
Vol. 11, no. 1
p. 144

Abstract

Read online

Abstract Background The cosmopolitan freshwater snail Physa acuta has recently found widespread use as a model organism for the study of mating systems and reproductive allocation. Mitochondrial DNA phylogenies suggest that Physa carolinae, recently described from the American southeast, is a sister species of P. acuta. The divergence of the acuta/carolinae ancestor from the more widespread P. pomilia appears to be somewhat older, and the split between a hypothetical acuta/carolinae/pomilia ancestor and P. gyrina appears older still. Results Here we report the results of no-choice mating experiments yielding no evidence of hybridization between gyrina and any of four other populations (pomilia, carolinae, Philadelphia acuta, or Charleston acuta), nor between pomilia and carolinae. Crosses between pomilia and both acuta populations yielded sterile F1 progeny with reduced viability, while crosses between carolinae and both acuta populations yielded sterile F1 hybrids of normal viability. A set of mate-choice tests also revealed significant sexual isolation between gyrina and all four of our other Physa populations, between pomilia and carolinae, and between pomilia and Charleston acuta, but not between pomilia and the acuta population from Philadelphia, nor between carolinae and either acuta population. These observations are consistent with the origin of hybrid sterility prior to hybrid inviability, and a hypothesis that speciation between pomilia and acuta may have been reinforced by selection for prezygotic reproductive isolation in sympatry. Conclusions We propose a two-factor model for the evolution of postzygotic reproductive incompatibility in this set of five Physa populations consistent with the Dobzhansky-Muller model of speciation, and a second two-factor model for the evolution of sexual incompatibility. Under these models, species trees may be said to correspond with gene trees in American populations of the freshwater snail, Physa.