Aerospace (Aug 2024)

Optimisation Design of Thermal Test System for Metal Fibre Surface Combustion Structure

  • Bin Qi,
  • Rong A,
  • Dongsheng Yang,
  • Ri Wang,
  • Sujun Dong,
  • Yinjia Zhou

DOI
https://doi.org/10.3390/aerospace11080668
Journal volume & issue
Vol. 11, no. 8
p. 668

Abstract

Read online

The metal fibre surface combustion structure has the characteristics of strong thermal matching ability, short response time, and strong shape adaptability. It has more advantages in the thermal test of complex hypersonic vehicle surface inlet, leading edge, etc. In this paper, a method of aerodynamic thermal simulation test based on metal fibre surface combustion is proposed. The aim of the study was to create a uniform target heat flow on the inner wall surface of a cylindrical specimen by matching the gas jet flow rate and the geometry of the combustion surface. The research adopted the optimisation design method based on the surrogate model to establish the numerical calculation model of a metal fibre combustion jet heating cylinder specimen. One hundred sample points were obtained through Latin hypercube sampling, and a database of design parameters and heat flux was established through numerical simulation. The kriging surrogate model and the non-dominated sequencing genetic optimisation algorithm with elite strategy were adopted. A bi-objective optimisation design was carried out with the optimisation objective of the coincidence between the predicted and the target heat flux on the inner wall of the specimen. The results showed that the average relative errors of heat flow density on the specimen surface were 8.8% and 6% through the leave-one-out cross-validation strategy and the validation of six test sample points, respectively. The relative error values in most regions were within 5%, which indicates that the established kriging surrogate model has high prediction accuracy. Under the optimal solution conditions, the numerical calculation results of the heat flow on the inner wall of the specimen were in good agreement with the target heat flow values, with an average relative error of less than 5% and a maximum value of less than 8%. These results show that the optimisation design method based on the kriging surrogate model can effectively match the thermal test parameters of metal fibre combustion structures.

Keywords