Partial Differential Equations in Applied Mathematics (Sep 2024)
A new fractional derivative extending classical concepts: Theory and applications
Abstract
In this paper, a novel general definition for the fractional derivative and fractional integral based on an undefined kernel function is introduced. For 0<α≤1, this definition aligns with classical interpretations and is applicable for calculating the derivative in an open negative interval I⊆[a,+∞),a∈R. Additionally, when α=1, the definition coincides with the classical derivative. Fundamental properties of the fractional integral and derivative, including the product rule, quotient rule, chain rule, Rolle’s theorem, and the mean value theorem, are derived. These properties are illustrated through various applications to demonstrate their applicability. Furthermore, some applications of solving fractional nonlinear systems of integro-differential equations using framelets are presented.