Technology in Cancer Research & Treatment (Apr 2023)

Histological Response to 5 kHz Irreversible Electroporation in a Porcine Liver Model

  • Hong Bae Kim PhD,
  • Ku Youn Baik PhD,
  • Chang Kyu Sung PhD

DOI
https://doi.org/10.1177/15330338231171767
Journal volume & issue
Vol. 22

Abstract

Read online

Unlike necrosis by thermal ablation, irreversible electroporation (IRE) is known to induce apoptosis by disrupting plasma membrane integrity with electric pulses while preserving the structure of blood vessels and bile ducts in liver tissue without a heat sink effect. This study aimed to investigate thermal damage and histopathological effects in the porcine liver by high-frequency electric pulses (5 kHz) which is much higher than the widely used 1 Hz. The electric field and thermal distributions of 5 kHz electric pulses were compared with those of 1 Hz in numerical simulations. 5 kHz-IRE was applied on pigs under ultrasound imaging to guide the electrode placement. The animals underwent computed tomography (CT) examination immediately and 1 day after IRE. After CT, IRE-treated tissues were taken and analyzed histologically. CT revealed that hepatic veins were intact for 1-day post-IRE. Histopathologically, the structure of the portal vein was intact, but endothelial cells were partially removed. In addition, the hepatic artery structure from which endothelial cells were removed were not damaged, while the bile duct structure and cholangiocytes were intact. The thermal injury was observed only in the vicinity of the electrodes as simulated in silico . 5 kHz-IRE generated high heat due to its short pulse interval, but the thermal damage was limited to the tissue around the electrodes. The histopathological damage caused by 5 kHz-IRE was close to that caused by 1 Hz-IRE. If a short-time treatment is required for reasons such as anesthesia, high-frequency IRE treatment is worth considering. Our observations will contribute to a better understanding of the IRE phenomena and search for advanced therapeutic conditions.