NeuroImage (Dec 2021)
The neural correlates of intermanual transfer
Abstract
Intermanual transfer of motor learning is a form of learning generalization that leads to behavioral advantages in various tasks of daily life. It might also be useful for rehabilitation of patients with unilateral motor deficits. Little is known about neural structures and cognitive processes that mediate intermanual transfer. Previous studies have suggested a role for primary motor cortex (M1) and the supplementary motor area (SMA). Here, we investigated the functional neuroanatomy of intermanual transfer with a special emphasis on functional connectivity within the motor network and between motor regions and attentional networks, including the fronto-parietal executive control network and visual attention networks. We designed a finger tapping task, in which young, heathy subjects trained the non-dominant left hand in the MRI scanner. Behaviorally, transfer of sequence learning was observed in most cases, independently of the trained hand's performance. Pre- and post-training functional connectivity patterns of cortical motor seeds were investigated using generalized psychophysiological interaction analyses. Transfer was correlated with the strength of connectivity between the left premotor cortex and structures within the dorsal attention network (superior parietal cortex, left middle temporal gyrus) and executive control network (right prefrontal regions) during pre-training, relative to post-training. Changes in connectivity within the motor network, and more particularly between trained and untrained M1, as well as between the SMA and untrained M1, correlated with transfer after training. Together, these results suggest that the interplay between attentional, executive and motor networks may support processes leading to transfer, whereas, following training, transfer translates into increased connectivity within the motor network.