Kaohsiung Journal of Medical Sciences (Jul 2016)

The effects of tadalafil and pentoxifylline on apoptosis and nitric oxide synthase in liver ischemia/reperfusion injury

  • Sibel Bektas,
  • Kemal Karakaya,
  • Murat Can,
  • Burak Bahadir,
  • Berrak Guven,
  • Nilsen Erdogan,
  • Sukru Oguz Ozdamar

DOI
https://doi.org/10.1016/j.kjms.2016.05.005
Journal volume & issue
Vol. 32, no. 7
pp. 339 – 347

Abstract

Read online

The aim of this study was to investigate the effects of tadalafil (TDF) and pentoxifylline (PTX) on hepatic apoptosis and the expressions of endothelial and inducible nitric oxide synthases (eNOS and iNOS) after liver ischemia/reperfusion (IR). Forty Wistar albino rats were randomly divided into five groups (n=8) as follows: sham group; IR group with ischemia/reperfusion alone; low-dose and high-dose TDF groups received 2.5 mg/kg and 10 mg/kg TDF, respectively; and PTX group received 40 mg/kg PTX. Blood was collected for the analysis of serum alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transferase, uric acid, malondialdehyde (MDA), and total antioxidant capacity (TAC). MDA and TAC also were measured in liver tissue. Histopathological examination was performed to assess the severity of hepatic injury. Apoptosis was evaluated using the apoptosis protease-activating factor 1 (APAF-1) antibody; the expressions of eNOS and iNOS were also assessed by immunohistochemistry in all groups. Serum alanine aminotransferase, aspartate aminotransferase, γ-glutamyl transferase, uric acid, MDA, and TAC, tissue MDA and TAC levels, hepatic injury, and score for extent and for intensity of eNOS, iNOS, and apoptosis protease-activating factor 1 were significantly different in TDF and PTX groups compared to the IR group. High dose-TDF and PTX have the best protective effect on IR-induced liver tissue damage. This study showed that TDF and PTX supplementation may be helpful in preventing free oxygen radical damage, lipid peroxidation, hepatocyte necrosis, and apoptosis in liver IR injury and minimizing liver damage.

Keywords