ChemPhysMater (Jan 2022)
Intrinsic valley polarization and anomalous valley hall effect in single-layer 2H-FeCl2
Abstract
Valley, as a new degree of freedom for electrons, has drawn considerable attention due to its significant potential for encoding and storing information. Lifting the energy degeneracy to achieve valley polarization is necessary for realizing valleytronic devices. Here, on the basis of first-principles calculations, we show that single-layer FeCl2 exhibits a large spontaneous valley polarization (∼101 meV) arising from the broken time-reversal symmetry and spin-orbital coupling, which can be continuously tuned by varying the direction of magnetic crystalline. By employing the perturbation theory, the underlying physical mechanism is unveiled. Moreover, the coupling between valley degree of freedom and ferromagnetic order could generate a spin- and valley-polarized anomalous Hall current in the presence of the in-plane electric field, facilitating its experimental exploration and practical applications.