Materials (Mar 2024)

Investigation of Liquid–Liquid Reaction Phenomena of Aluminum in Calcium Silicate Slag

  • Harald G. R. Philipson,
  • Maria Wallin,
  • Kristian Etienne Einarsrud

DOI
https://doi.org/10.3390/ma17071466
Journal volume & issue
Vol. 17, no. 7
p. 1466

Abstract

Read online

To achieve better process control of silicon (Si) alloy production using aluminum as a reductant of calcium silicate (CaO-SiO2) slag, it is necessary to understand the reaction phenomena concerning the behavior of formed phases at the metal-slag interface during conversion. The interfacial interaction behavior of non-agitated melt was investigated using the sessile drop method for varying time and temperature, followed by EPMA phase analysis at the vicinity of the metal–slag interface. The most remarkable features of the reaction were the accumulation of solid calcium aluminate product layers at the Al alloy–slag interface and spontaneous emulsion of Si-alloy droplets in the slag phase. The reduction is strictly limited at 1550 °C due to the slow transfer of calcium aluminates away from the metal-slag interface into the partially liquid bulk slag. Reduction was significantly improved at 1600–1650 °C despite an interfacial layer being present, where the conversion rate is most intense in the first minutes of the liquid–liquid contact. A high mass transfer rate across the interface was shown related to the apparent interfacial tension depression of the wetting droplet along with a significant perturbed interface and emulsion due to Kelvin–Helmholtz instability driven by built-up interfacial charge at the interface. The increased reaction rate observed from 1550 °C to 1600–1650 °C for the non-agitated melt was attributed to the advantageous physical properties of the slag phase, which can be further regulated by the stoichiometry of metal–slag interactions and the composition of the slag.

Keywords