eLife (Nov 2021)

Consensus-based guidance for conducting and reporting multi-analyst studies

  • Balazs Aczel,
  • Barnabas Szaszi,
  • Gustav Nilsonne,
  • Olmo R van den Akker,
  • Casper J Albers,
  • Marcel ALM van Assen,
  • Jojanneke A Bastiaansen,
  • Daniel Benjamin,
  • Udo Boehm,
  • Rotem Botvinik-Nezer,
  • Laura F Bringmann,
  • Niko A Busch,
  • Emmanuel Caruyer,
  • Andrea M Cataldo,
  • Nelson Cowan,
  • Andrew Delios,
  • Noah NN van Dongen,
  • Chris Donkin,
  • Johnny B van Doorn,
  • Anna Dreber,
  • Gilles Dutilh,
  • Gary F Egan,
  • Morton Ann Gernsbacher,
  • Rink Hoekstra,
  • Sabine Hoffmann,
  • Felix Holzmeister,
  • Juergen Huber,
  • Magnus Johannesson,
  • Kai J Jonas,
  • Alexander T Kindel,
  • Michael Kirchler,
  • Yoram K Kunkels,
  • D Stephen Lindsay,
  • Jean-Francois Mangin,
  • Dora Matzke,
  • Marcus R Munafò,
  • Ben R Newell,
  • Brian A Nosek,
  • Russell A Poldrack,
  • Don van Ravenzwaaij,
  • Jörg Rieskamp,
  • Matthew J Salganik,
  • Alexandra Sarafoglou,
  • Tom Schonberg,
  • Martin Schweinsberg,
  • David Shanks,
  • Raphael Silberzahn,
  • Daniel J Simons,
  • Barbara A Spellman,
  • Samuel St-Jean,
  • Jeffrey J Starns,
  • Eric Luis Uhlmann,
  • Jelte Wicherts,
  • Eric-Jan Wagenmakers

DOI
https://doi.org/10.7554/eLife.72185
Journal volume & issue
Vol. 10

Abstract

Read online

Any large dataset can be analyzed in a number of ways, and it is possible that the use of different analysis strategies will lead to different results and conclusions. One way to assess whether the results obtained depend on the analysis strategy chosen is to employ multiple analysts and leave each of them free to follow their own approach. Here, we present consensus-based guidance for conducting and reporting such multi-analyst studies, and we discuss how broader adoption of the multi-analyst approach has the potential to strengthen the robustness of results and conclusions obtained from analyses of datasets in basic and applied research.

Keywords