Inorganics (Jul 2023)

Binder-Free CoMn<sub>2</sub>O<sub>4</sub> Nanoflower Particles/Graphene/Carbon Nanotube Composite Film for a High-Performance Lithium-Ion Battery

  • Xin Tong,
  • Bo Yang,
  • Fei Li,
  • Manqi Gu,
  • Xinxing Zhan,
  • Juan Tian,
  • Shengyun Huang,
  • Gang Wang

DOI
https://doi.org/10.3390/inorganics11080314
Journal volume & issue
Vol. 11, no. 8
p. 314

Abstract

Read online

Manganese-based bimetallic oxides show a high theoretical specific capacity, making them a potential next-generation lithium-ion battery anode material. However, as with metal oxide anode materials, aggregation, volume expansion, and poor conductivity are the main obstacles. In this manuscript, flexible CoMn2O4/graphene/carbon nanotube films were successfully prepared through a facile filtration strategy and a subsequent thermal treatment process. When used as anodes for lithium batteries, these films can be pressed onto nickel foam without other conductive additives and binders, which simplifies the manufacturing process. When used as an anode in the lithium-ion battery, CoMn2O4/GR/CNT film exhibits a high discharge capacity of 881 mAh g−1 after 55 cycles. This value is ~2 times higher than the discharge capacity of CoMn2O4. The three-dimensional GR/CNT carrier effectively dispersed CoMn2O4, preventing its aggregation and alleviating the problem of volume expansion.

Keywords