Clinical Epigenetics (Jan 2024)

Tumor microenvironment deconvolution identifies cell-type-independent aberrant DNA methylation and gene expression in prostate cancer

  • Samuel R. Reynolds,
  • Ze Zhang,
  • Lucas A. Salas,
  • Brock C. Christensen

DOI
https://doi.org/10.1186/s13148-023-01609-3
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Background Among men, prostate cancer (PCa) is the second most common cancer and the second leading cause of cancer death. Etiologic factors associated with both prostate carcinogenesis and somatic alterations in tumors are incompletely understood. While genetic variants associated with PCa have been identified, epigenetic alterations in PCa are relatively understudied. To date, DNA methylation (DNAm) and gene expression (GE) in PCa have been investigated; however, these studies did not correct for cell-type proportions of the tumor microenvironment (TME), which could confound results. Methods The data (GSE183040) consisted of DNAm and GE data from both tumor and adjacent non-tumor prostate tissue of 56 patients who underwent radical prostatectomies prior to any treatment. This study builds upon previous studies that examined methylation patterns and GE in PCa patients by using a novel tumor deconvolution approach to identify and correct for cell-type proportions of the TME in its epigenome-wide association study (EWAS) and differential expression analysis (DEA). Results The inclusion of cell-type proportions in EWASs and DEAs reduced the scope of significant alterations associated with PCa. We identified 2,093 significantly differentially methylated CpGs (DMC), and 51 genes associated with PCa, including PCA3, SPINK1, and AMACR. Conclusions This work illustrates the importance of correcting for cell types of the TME when performing EWASs and DEAs on PCa samples, and establishes a more confounding-adverse methodology. We identified a more tumor-cell-specific set of altered genes and epigenetic marks that can be further investigated as potential biomarkers of disease or potential therapeutic targets.

Keywords