Journal of Translational Medicine (Jul 2024)
Unlocking cardioprotection: iPSC exosomes deliver Nec-1 to target PARP1/AIFM1 axis, alleviating HF oxidative stress and mitochondrial dysfunction
Abstract
Abstract Background Heart failure (HF) is characterized by oxidative stress and mitochondrial dysfunction. This study investigates the therapeutic potential of Necrostatin-1 (Nec-1) delivered through exosomes derived from induced pluripotent stem cells (iPSCs) to address these pathologies in HF. Methods An HF rat model was established, and comprehensive assessments were performed using echocardiography, hemodynamics, and ventricular mass index measurements. iPSCs were used to isolate exosomes, loaded with Nec-1, and characterized for efficient delivery into cardiomyocytes. The interaction between Nec-1-loaded exosomes (Nec-1-Exos), poly (ADP-ribose) polymerase 1 (PARP1), and apoptosis-inducing factor mitochondria-associated 1 (AIFM1) was explored. Gain-of-function experiments assessed changes in cardiomyocyte parameters, and histological analyses were conducted on myocardial tissues. Results Cardiomyocytes successfully internalized Nec-1-loaded exosomes, leading to downregulation of PARP1, inhibition of AIFM1 nuclear translocation, increased ATP and superoxide dismutase levels, reduced reactive oxygen species and malonaldehyde levels, and restored mitochondrial membrane potential. Histological examinations confirmed the modulation of the PARP1/AIFM1 axis by Nec-1, mitigating HF. Conclusions iPSC-derived exosomes carrying Nec-1 attenuate oxidative stress and mitochondrial dysfunction in HF by targeting the PARP1/AIFM1 axis. This study proposes a promising therapeutic strategy for HF management and highlights the potential of exosome-mediated drug delivery.
Keywords