Journal of Biomedical Photonics & Engineering (Feb 2016)

Assessing mechanical properties of tissue phantoms with non-contact optical coherence elastography and Michelson interferometric vibrometry

  • Jiasong Li,
  • Chih-Hao Liu,
  • Alexander Schill,
  • Manmohan Singh,
  • Achuth Nair,
  • Valery P. Zakharov,
  • Kirill V. Larin

DOI
https://doi.org/10.18287/JBPE-2015-1-4-229
Journal volume & issue
Vol. 1, no. 4
pp. 229 – 235

Abstract

Read online

Purpose: Elastography is an emerging method for detecting the pathological changes in tissue biomechanical properties caused by various diseases. In this study, we have compared two methods of noncontact optical elastography for quantifying Young’s modulus of tissue-mimicking agar phantoms of various concentrations: a laser Michelson interferometric vibrometer and a phase-stabilized swept source optical coherence elastography system. Methods: The elasticity of the phantoms was estimated from the velocity of air-pulse induced elastic waves as measured by these two techniques. Results: The results show that both techniques were able to accurately assess the elasticity of the samples as compared to uniaxial mechanical compression testing. Conclusion: The laser Michelson interferometric vibrometer is significantly more cost-effective, but it cannot directly provide the elastic wave temporal profile, nor can it offer in-depth information.

Keywords