Energies (May 2022)

The Fouling Effect on Commercial Ceramic Membranes during Filtration of Microalgae <i>Chlorella vulgaris</i> and <i>Monoraphidium contortum</i>

  • Arkadiusz Nędzarek,
  • Piotr Tomasz Mitkowski

DOI
https://doi.org/10.3390/en15103745
Journal volume & issue
Vol. 15, no. 10
p. 3745

Abstract

Read online

Although interest in the use of membranes for the concentration of microalgal biomass has steadily been growing, little is known regarding the phenomena of membrane fouling. In addition, more attention has been given to polymeric membranes compared to ceramic membranes, which have a longer life that is associated with a higher resistance to aggressive chemical cleaning. In this study, microfiltration (MF) and ultrafiltration (UF) of two microalgae species, Chlorella vulgaris and Monoraphidium contortum, were carried out using tubular crossflow ceramic membranes. Permeate flux was measured, resistance was calculated, and dissolved organic carbon (DOC) was determined. The flux reduction during the first 10 min of filtration was higher for MF than UF (>70% and 3 m−2 s−1) 6.2 × 10−4 (for MF) and 1.7 × 10−4 (for UF). Total resistances (in m−1) were in the ranges of 4.2–5.4 × 1012 (UF) and 2.6–3.1 × 1012 (MF) for M. contortum and C. vulgaris, respectively. DOC reduction was higher for UF membrane (>80%) than for MF (−1) in permeates following MF and UF were about five and two, respectively. In conclusion, we demonstrated: (i) higher irreversible resistance for UF and reversible resistance for MF; (ii) permeate flux higher for UF and for M. contortum; (iii) the significant role of dissolved organic compounds in the formation of reversible resistance for MF and irreversible resistance for UF.

Keywords