Complexity (Jan 2020)
The Solvability of Fractional Elliptic Equation with the Hardy Potential
Abstract
In this paper, we study the existence and nonexistence of solutions to fractional elliptic equations with the Hardy potential −Δsu−λu/x2s=ur−1+δgu,in Ω,ux>0,in Ω,ux=0,in ℝN∖Ω, where Ω⊂ℝN is a bounded Lipschitz domain with 0∈Ω, −Δs is a fractional Laplace operator, s∈0,1, N>2s, δ is a positive number, 2<r<rλ,s≡N+2s−2αλ/N−2s−2αλ+1, αλ∈0,N−2s/2 is a parameter depending on λ, 0<λ<ΛN,s, and ΛN,s=22sΓ2N+2s/4/Γ2N−2s/4 is the sharp constant of the Hardy–Sobolev inequality.