PLoS ONE (Jan 2020)

Electrospun polycaprolactone (PCL)-amnion nanofibrous membrane prevents adhesions and promotes nerve repair in a rat model of sciatic nerve compression.

  • Ruiyi Dong,
  • Chunjie Liu,
  • Siyu Tian,
  • Jiangbo Bai,
  • Kunlun Yu,
  • Lei Liu,
  • Dehu Tian

DOI
https://doi.org/10.1371/journal.pone.0244301
Journal volume & issue
Vol. 15, no. 12
p. e0244301

Abstract

Read online

Adhesion and scarring after neural surgery are detrimental to nerve regeneration and functional recovery. Amniotic membranes have been used in tissue repair due to their immunogenicity and richness in cytokines. In this study, an electrospun polycaprolactone (PCL)-amnion nanofibrous membrane was prepared for the treatment of sciatic nerve compression in a rat model. The effects of the PCL-amnion nanofibrous membrane on the prevention of adhesion formation and nerve regeneration were evaluated using electrophysiology and histological analyses. Compared with the medical chitosan hydrogel dressing, the PCL-amnion nanofibrous membrane significantly reduced peripheral nerve adhesion and promoted the rapid recovery of nerve conduction. Moreover, the immunohistochemical analysis identified more Schwann cells and less pro-inflammatory M1 macrophages in the PCL-amnion group. Western blot and RT-PCR results showed that the expression levels of type-Ⅰ and Ⅲ collagen in the PCL-treated rats were half of those in the control group after 12 weeks, while the expression level of nerve growth factor was approximately 3.5 times that found in the rats treated with medical chitosan hydrogel. In summary, electrospun PCL-amnion nanofibrous membranes can effectively reduce adhesion after neural surgery and promote nerve repair and regeneration. The long-term retention in vivo and sustained release of cytokines make PCL-amnion a promising biomaterial for clinical application.