PRX Quantum (Jul 2024)

Iterative Assembly of ^{171}Yb Atom Arrays with Cavity-Enhanced Optical Lattices

  • M. A. Norcia,
  • H. Kim,
  • W. B. Cairncross,
  • M. Stone,
  • A. Ryou,
  • M. Jaffe,
  • M. O. Brown,
  • K. Barnes,
  • P. Battaglino,
  • T. C. Bohdanowicz,
  • A. Brown,
  • K. Cassella,
  • C.-A. Chen,
  • R. Coxe,
  • D. Crow,
  • J. Epstein,
  • C. Griger,
  • E. Halperin,
  • F. Hummel,
  • A. M. W. Jones,
  • J. M. Kindem,
  • J. King,
  • K. Kotru,
  • J. Lauigan,
  • M. Li,
  • M. Lu,
  • E. Megidish,
  • J. Marjanovic,
  • M. McDonald,
  • T. Mittiga,
  • J. A. Muniz,
  • S. Narayanaswami,
  • C. Nishiguchi,
  • T. Paule,
  • K. A. Pawlak,
  • L. S. Peng,
  • K. L. Pudenz,
  • D. Rodríguez Pérez,
  • A. Smull,
  • D. Stack,
  • M. Urbanek,
  • R. J. M. van de Veerdonk,
  • Z. Vendeiro,
  • L. Wadleigh,
  • T. Wilkason,
  • T.-Y. Wu,
  • X. Xie,
  • E. Zalys-Geller,
  • X. Zhang,
  • B. J. Bloom

DOI
https://doi.org/10.1103/PRXQuantum.5.030316
Journal volume & issue
Vol. 5, no. 3
p. 030316

Abstract

Read online Read online

Assembling and maintaining large arrays of individually addressable atoms is a key requirement for continued scaling of neutral-atom-based quantum computers and simulators. In this work, we demonstrate a new paradigm for assembly of atomic arrays, based on a synergistic combination of optical tweezers and cavity-enhanced optical lattices, and the incremental filling of a target array from a repetitively filled reservoir. In this protocol, the tweezers provide microscopic rearrangement of atoms, while the cavity-enhanced lattices enable the creation of large numbers of optical traps with sufficient depth for rapid low-loss imaging of atoms. We apply this protocol to demonstrate near-deterministic filling (99% per-site occupancy) of 1225-site arrays of optical traps. Because the reservoir is repeatedly filled with fresh atoms, the array can be maintained in a filled state indefinitely. We anticipate that this protocol will be compatible with mid-circuit reloading of atoms into a quantum processor, which will be a key capability for running large-scale error-corrected quantum computations whose durations exceed the lifetime of a single atom in the system.