Cell Reports (Nov 2023)

Efficient exon skipping by base-editor-mediated abrogation of exonic splicing enhancers

  • Han Qiu,
  • Geng Li,
  • Juanjuan Yuan,
  • Dian Yang,
  • Yunqing Ma,
  • Feng Wang,
  • Yi Dai,
  • Xing Chang

Journal volume & issue
Vol. 42, no. 11
p. 113340

Abstract

Read online

Summary: Duchenne muscular dystrophy (DMD) is a severe genetic disease caused by the loss of the dystrophin protein. Exon skipping is a promising strategy to treat DMD by restoring truncated dystrophin. Here, we demonstrate that base editors (e.g., targeted AID-mediated mutagenesis [TAM]) are able to efficiently induce exon skipping by disrupting functional redundant exonic splicing enhancers (ESEs). By developing an unbiased and high-throughput screening to interrogate exonic sequences, we successfully identify novel ESEs in DMD exons 51 and 53. TAM-CBE (cytidine base editor) induces near-complete skipping of the respective exons by targeting these ESEs in patients’ induced pluripotent stem cell (iPSC)-derived cardiomyocytes. Combined with strategies to disrupt splice sites, we identify suitable single guide RNAs (sgRNAs) with TAM-CBE to efficiently skip most DMD hotspot exons without substantial double-stranded breaks. Our study thus expands the repertoire of potential targets for CBE-mediated exon skipping in treating DMD and other RNA mis-splicing diseases.

Keywords