IEEE Access (Jan 2018)
A Nuclear Norm Based Matrix Regression Based Projections Method for Feature Extraction
Abstract
In the traditional graph embedding framework, the graph is usually built by k-NN or r-ball. Since it is difficult to manually set the parameters k and r in the high-dimensional space, sparse representation-based methods are usually introduced to automatically build the graphs. In recent years, nuclear norm-based matrix regression (NMR) has been proposed for face recognition using the low rank structural information (i.e., the image matrix-based error model). Inspired by NMR, we give a NMR-based projections (NMRP) method for feature extraction and recognition. The experiments on FERET and extended Yale B face databases show that NMR can be used to build the graph while NMRP is an effective feature extraction method.
Keywords