PLoS ONE (Jan 2011)
Assessing antiangiogenic therapy response by DCE-MRI: development of a physiology driven multi-compartment model using population pharmacometrics.
Abstract
Dynamic contrast enhanced (DCE-) MRI is commonly applied for the monitoring of antiangiogenic therapy in oncology. Established pharmacokinetic (PK) analysis methods of DCE-MRI data do not sufficiently reflect the complex anatomical and physiological constituents of the analyzed tissue. Hence, accepted endpoints such as Ktrans reflect an unknown multitude of local and global physiological effects often rendering an understanding of specific local drug effects impossible. In this work a novel multi-compartment PK model is presented, which for the first time allows the separation of local and systemic physiological effects. DCE-MRI data sets from multiple, simultaneously acquired tissues, i.e. spinal muscle, liver and tumor tissue, of hepatocellular carcinoma (HCC) bearing rats were applied for model development. The full Markov chain Monte Carlo (MCMC) Bayesian analysis method was applied for model parameter estimation and model selection was based on histological and anatomical considerations and numerical criteria. A population PK model (MTL3 model) consisting of 3 measured and 6 latent (unobserved) compartments was selected based on Bayesian chain plots, conditional weighted residuals, objective function values, standard errors of model parameters and the deviance information criterion. Covariate model building, which was based on the histology of tumor tissue, demonstrated that the MTL3 model was able to identify and separate tumor specific, i.e. local, and systemic, i.e. global, effects in the DCE-MRI data. The findings confirm the feasibility to develop physiology driven multi-compartment PK models from DCE-MRI data. The presented MTL3 model allowed the separation of a local, tumor specific therapy effect and thus has the potential for identification and specification of effectors of vascular and tissue physiology in antiangiogenic therapy monitoring.