Neurobiology of Disease (Oct 2001)

The Neuronal Calcium Sensor Protein VILIP-1 Is Associated with Amyloid Plaques and Extracellular Tangles in Alzheimer's Disease and Promotes Cell Death and Tau Phosphorylation in Vitro: A Link between Calcium Sensors and Alzheimer's Disease?

  • I. Schnurra,
  • H.-G. Bernstein,
  • P. Riederer,
  • K.-H. Braunewell

Journal volume & issue
Vol. 8, no. 5
pp. 900 – 909

Abstract

Read online

To investigate whether the observed association of intracellular neuronal calcium sensor (NCS) proteins with amyloid plaques and neurofibrillar tangles in Alzheimer brains is linked to a possible neuroprotective or neurotoxic activity of the protein, we performed cytotoxicity tests in PC12 cells transfected with the calcium sensor protein VILIP-1 (visinin-like protein) and the calcium buffer protein calbindin-D28K. Whereas VILIP-1 expression enhanced the neurotoxic effect of ionomycin already at low ionophore concentrations, calbindin-D28K protected against ionomycin-induced cytotoxicity only at high ionomycin and therefore calcium concentrations. However, in double-transfected cells calbindin-D28K rescued VILIP-1-mediated cytotoxicity at low ionomycin concentrations. Since VILIP-1 was found to be associated with fibrillar tangles in Alzheimer brains, we tested whether VILIP-1 has an influence on tau hyperphosphorylation. VILIP-1 expression enhanced hyperphosphorylation of tau protein compared to nontransfected or calbindin-D28K-transfected cells. These results raise the possibility that the observed reduction in VILIP-1-expressing cells may indicate a selective vulnerability of these neurons and that the calcium sensor protein is involved in the pathophysiology of Alzheimer's disease. The calcium sensor protein may influence tau phosphorylation and have a role in calcium-mediated neurotoxicity opposed to the previously discovered protective effect of calcium buffer proteins.

Keywords