Science of Remote Sensing (Jun 2024)

Soil moisture retrieval at high spatial resolution over alpine ecosystems on Nagqu-Tibetan plateau: A comparative study on semiempirical and machine learning approaches

  • Aida Taghavi-Bayat,
  • Markus Gerke,
  • Björn Riedel

Journal volume & issue
Vol. 9
p. 100135

Abstract

Read online

Soil moisture (SM) is an essential climate variable that directly and indirectly affects vegetation growth and survival through land‒atmosphere interactions. Alpine vegetation on the Tibetan Plateau is part of a unique ecosystem that is vulnerable to changes in environmental factors such as SM; consequently, this makes this ecosystem extremely sensitive to climate change. This study investigated the potential of synthetic aperture radar (SAR) vegetation indices based on Sentinel-1 data for retrieving SM at high spatial resolution (10 m) over an alpine grassland ecosystem in the Nagqu region. Several SAR vegetation indices, including the dual polarization SAR vegetation index (DPSVI), modified dual polarization SAR vegetation index (mDPSVI), dual polarimetric radar vegetation index (DpRVI), polarimetric radar vegetation index (PRVI), and radar vegetation index (RVI), were used in the semiempirical water cloud model (WCM) to determine which indices provide better SM retrievals in this alpine ecosystem. In addition, the potential of the distributed random forest (DRF) machine learning algorithm was explored using the same variables as the WCM together with several ecohydrological parameters from different data sources. The recursive feature elimination algorithm was used to establish the optimized DRF model. Among the vegetation indices based on SAR data, DPSVI, DpRVI, and PRVI showed similar results, with DPSVI performing slightly better than the other SAR indices, with a correlation coefficient (R2) of 0.70 and root mean squared error (RMSE) of 0.04 m3m-3. A comparison of the optimized DRF with the best fitted WCM reveals that the DRF algorithm outperformed the WCM, including having more predictors (10 variables) in the model. The results show that the overall accuracies in terms of the R2 values and the RMSEs of both the WCMs and the DRF models were 0.52–0.75 and 0.08 m3 m−3 to 0.04 m3 m−3, respectively, which was validated over in situ SM measurements in the Nagqu region.

Keywords