Journal of Functional Biomaterials (Nov 2024)

Strontium- and Copper-Doped Ceramic Granules in Bone Regeneration-Associated Cellular Processes

  • Yuliya Safarova (Yantsen),
  • Assem Nessipbekova,
  • Aizhan Syzdykova,
  • Farkhad Olzhayev,
  • Bauyrzhan Umbayev,
  • Aliya Kassenova,
  • Inna V. Fadeeva,
  • Sholpan Askarova,
  • Julietta V. Rau

DOI
https://doi.org/10.3390/jfb15110352
Journal volume & issue
Vol. 15, no. 11
p. 352

Abstract

Read online

Background: Pathological bone fracturing is an escalating problem driven by increasing aging and obesity. Bioceramics, particularly tricalcium-phosphate-based materials (TCP), are renowned for their exceptional biocompatibility, osteoconductivity, and ability to promote biomineralization. In the present study, we designed and characterized TCP porous granules doped with strontium (Sr) and copper (Cu) (CuSr TCP). Sr2+ ions were selected as Sr plays a crucial role in early bone formation, osteogenesis, and angiogenesis; Cu2+ ions possess antibacterial properties. Materials: The synthesized CuSr TCP granules were characterized by X-ray diffraction. Cytotoxicity and cell proliferation analyses’ assays were performed through the lactate dehydrogenase (LDH) activity and CCK-8 viability tests in rat bone marrow-derived mesenchymal stem cells (BM-MSCs). Hemolytic activity was carried out with human red blood cells (RBCs). Early and late osteogenesis were assessed with alkaline phosphatase (ALP) and Alizarin Red S activity in human osteoblast progenitor cells and rat BM-MSCs. The influence of CuSr TCP on angiogenesis was investigated in human umbilical vein endothelial cells (HUVECs). Results: We have demonstrated that media enriched with CuSr TCP in concentrations ranging from 0.1 mg/mL to 1 mg/mL were not cytotoxic and did not significantly affect cell proliferation rate motility. Moreover, a concentration of 0.5 mg/mL showed a 2.5-fold increase in the migration potential of BM-MSCs. We also found that CuSr TCP-enriched media slightly increased early osteogenesis. We also found that Sr and Cu substitutions in TCP particles significantly enhanced the measured angiogenic parameters compared to control and unsubstituted TCP granules. Conclusion: Our results demonstrate that TCP porous granules doped with Sr and Cu are biocompatible, promote osteodifferentiation and angiogenesis, and could be recommended for further in vivo studies.

Keywords