Frontiers in Microbiology (Jun 2017)

Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media

  • Ying Li,
  • Ying Li,
  • He Wang,
  • He Wang,
  • Yu-Pei Zhao,
  • Ying-Chun Xu,
  • Ying-Chun Xu,
  • Po-Ren Hsueh

DOI
https://doi.org/10.3389/fmicb.2017.01209
Journal volume & issue
Vol. 8

Abstract

Read online

We evaluated the accuracy of the Bruker Biotyper matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) system at identifying clinical isolates of Aspergillus species that were grown on agar media. A total of 381 non-duplicate Aspergillus isolates representing 21 different Aspergillus species identified by molecular analysis were included in this study. The Bruker Biotyper MALDI-TOF MS system was able to identify 30.2% (115/381) of the isolates to the species level (score values of ≥2.000) and 49.3% to the genus level (score values of 1.700–1.999). When the identification cutoff value was lowered from ≥2.000 to ≥1.700, the species-level identification rate increased to 79.5% with a slight rise of false identification from 2.6 to 5.0%. From another aspect, a correct species-level identification rate of 89% could be reached by the Bruker Biotyper MALDI-TOF MS system regardless of the score values obtained. The Bruker Biotyper MALDI-TOF MS system had a moderate performance in identification of Aspergillus directly inoculated on solid agar media. Continued expansion of the Bruker Biotyper MALDI-TOF MS database and adoption of alternative cutoff values for interpretation are required to improve the performance of the system for identifying highly diverse species of clinically encountered Aspergillus isolates.

Keywords