Agronomy (Oct 2020)

Optimized Nitrogen Application Increases Soil Water Extraction by Changing in-Season Maize Root Morphology and Distribution in Rainfed Farmland

  • Liang Tang,
  • Haoran Sun,
  • Ruxiao Sun,
  • Yinan Niu,
  • Jingrong Song,
  • Shiqing Li,
  • Yufang Shen

DOI
https://doi.org/10.3390/agronomy10101606
Journal volume & issue
Vol. 10, no. 10
p. 1606

Abstract

Read online

The proper promotion of a deep root system is important for maize cultivation to improve water use efficiency in the arid and semi-arid Loess Plateau. Here, a field experiment was conducted to assess the effect of combined controlled release urea and normal urea on root growth and water extraction of maize in dryland fields. Maize in the combined controlled release urea and normal urea treatment had greater root systems compared to those in the normal urea treatment and no N application treatment. Compared to the urea treatment, combined controlled release urea and normal urea advanced the root length density and root weight density in the 0–10 cm soil layer at R1 stage by 30.99% and 45.03% in 2016 and by 20.54% and 19.13% in 2017. The root length density also increased at the dent stage (R5) by 52.05% and 47.75% in 2016 and 2017, and root weight density increased by 19.58% in 2016. Combined controlled release urea and normal urea promoted production of fine roots and root distribution, as well as decreased soil water storage (SWS) in the deep soil layer at the R5 stage. The grain yield was positively correlated with root length density and root weight density in the topsoil layer at the silking stage (R1) and in the whole soil profile at the R5 stage, suggesting that better root system management is helpful for increasing crop grain yield. Therefore, this work demonstrates that combined use of controlled release urea and normal urea to higher crop yields might attribute to increasing water extraction by optimizing in-season maize root morphology and distribution in the rainfed farmland of the Loess Plateau.

Keywords