Applied Sciences (Jun 2018)

Using Small Capacity Fuel Cells Onboard Drones for Battery Cooling: An Experimental Study

  • Shayok Mukhopadhyay,
  • Sheehan Fernandes,
  • Mohammad Shihab,
  • Danial Waleed

DOI
https://doi.org/10.3390/app8060942
Journal volume & issue
Vol. 8, no. 6
p. 942

Abstract

Read online

Recently, quadrotor-based drones have attracted a lot of attention because of their versatility, which makes them an ideal medium for a variety of applications, e.g., personal photography, surveillance, and the delivery of lightweight packages. The flight duration of a drone is limited by its battery capacity. Increasing the payload capacity of a drone requires more current to be supplied by the battery onboard a drone. Elevated currents through a Li-ion battery can increase the battery temperature, thus posing a significant risk of fire or explosion. Li-ion batteries are suited for drone applications, due to their high energy density. There have been attempts to use hydrogen fuel cells onboard drones. Fuel cell stacks and fuel tank assemblies can have a high energy to weight ratio. So, they may be able to power long duration drone flights, but such fuel cell stacks and associated systems, are usually extremely expensive. Hence, this work proposes the novel use of a less expensive, low capacity, metal hydride fuel stick-powered fuel cell stack as an auxiliary power supply onboard a drone. A primary advantage of this is that the fuel sticks can be used to cool the batteries, and a side effect is that this slightly reduces the burden on the onboard Li-ion battery and provides a small increment in flight time. This work presents the results of an experimental study which shows the primary effect (i.e., decrease in battery temperature) and the secondary side effect (i.e., a small increment in flight time) obtained by using a fuel cell stack. In this work, a metal hydride fuel stick powered hydrogen fuel cell is used along with a Li-ion battery onboard a drone.

Keywords