Artificial Intelligence Chemistry (Jun 2024)

Combining state-of-the-art quantum chemistry and machine learning make gold standard potential energy surfaces accessible for medium-sized molecules

  • Apurba Nandi,
  • Péter R. Nagy

Journal volume & issue
Vol. 2, no. 1
p. 100036

Abstract

Read online

Developing full-dimensional machine-learned potentials with the current “gold-standard” coupled-cluster (CC) level is challenging for medium-sized molecules due to the high computational cost. Consequently, researchers are often bound to use lower-level electronic structure methods such as density functional theory or second-order Møller–Plesset perturbation theory (MP2). Here, we demonstrate on a representative example that gold-standard potentials can now be effectively constructed for molecules of 15 atoms using off-the-shelf hardware. This is achieved by accelerating the CCSD(T) computations via the accurate and cost-effective frozen natural orbital (FNO) approach. The Δ-machine learning (Δ-ML) approach is employed with the use of permutationally invariant polynomials to fit a full-dimensional potential energy surface of the acetylacetone molecule, but any other effective descriptor and ML approach can similarly benefit from the accelerated data generation proposed here. Our benchmarks for the global minima, H-transfer TS, and many high-lying configurations show the excellent agreement of FNO-CCSD(T) results with conventional CCSD(T) while achieving a significant time advantage of about a factor of 30–40. The obtained Δ-ML PES shows high fidelity from multiple perspectives including energetic, structural, and vibrational properties. We obtain the symmetric double well H-transfer barrier of 3.15 kcal/mol in excellent agreement with the direct FNO-CCSD(T) barrier of 3.11 kcal/mol as well as with the benchmark CCSD(F12*)(T+)/CBS value of 3.21 kcal/mol. Furthermore, the tunneling splitting due to H-atom transfer is calculated using a 1D double-well potential, providing improved estimates over previous ones obtained using an MP2-based PES. The methodology introduced here represents a significant advancement in the efficient and precise construction of potentials at the CCSD(T) level for molecules above the current limit of 15 atoms.

Keywords