Applied Sciences (Apr 2024)
Enhancing Robustness of Surface Electromyography Pattern Recognition at Different Arm Positions for Transhumeral Amputees Using Deep Adversarial Inception Domain Adaptation
Abstract
Pattern recognition in myoelectric control that relies on the myoelectric activity associated with arm motions is an effective control method applied to myoelectric prostheses. Individuals with transhumeral amputation face significant challenges in effectively controlling their prosthetics, as muscle activation varies with changes in arm positions, leading to a notable decrease in the accuracy of motion pattern recognition and consequently resulting in a high rejection rate of prosthetic devices. Therefore, to achieve high accuracy and arm position stability in upper-arm motion recognition, we propose a Deep Adversarial Inception Domain Adaptation (DAIDA) based on the Inception feature module to enhance the generalization ability of the model. Surface electromyography (sEMG) signals were collected from 10 healthy subjects and two transhumeral amputees while performing hand, wrist, and elbow motions at three arm positions. The recognition performance of different feature modules was compared, and ultimately, accurate recognition of upper-arm motions was achieved using the Inception C module with a recognition accuracy of 90.70% ± 9.27%. Subsequently, validation was performed using data from different arm positions as source and target domains, and the results showed that compared to the direct use of a convolutional neural network (CNN), the recognition accuracy on untrained arm positions increased by 75.71% (p < 0.05), with a recognition accuracy of 91.25% ± 6.59%. Similarly, in testing scenarios involving multiple arm positions, there was a significant improvement in recognition accuracy, with recognition accuracy exceeding 90% for both healthy subjects and transhumeral amputees.
Keywords