Ural Mathematical Journal (Dec 2020)
OPEN PACKING NUMBER FOR SOME CLASSES OF PERFECT GRAPHS
Abstract
Let \(G\) be a graph with the vertex set \(V(G)\). A subset \(S\) of \(V(G)\) is an open packing set of \(G\) if every pair of vertices in \(S\) has no common neighbor in \(G.\) The maximum cardinality of an open packing set of \(G\) is the open packing number of \(G\) and it is denoted by \(\rho^o(G)\). In this paper, the exact values of the open packing numbers for some classes of perfect graphs, such as split graphs, \(\{P_4, C_4\}\)-free graphs, the complement of a bipartite graph, the trestled graph of a perfect graph are obtained.
Keywords