Scientific Reports (Sep 2024)
Quantum-inspired clustering with light
Abstract
Abstract This article introduces a novel approach to perform the simulation of a single qubit quantum-inspired algorithm using laser beams. Leveraging the polarization states of photonic qubits, and inspired by variational quantum eigensolvers, we develop a variational quantum-inspired algorithm implementing a clustering procedure following the approach proposed by some of us in SciRep 13, 13284 (2023). A key aspect of our research involves the utilization of non-orthogonal states within the photonic domain, harnessing the potential of polarization schemes to reproduce unitary circuits. By mapping these non-orthogonal states into polarization states, we achieve an efficient and versatile quantum information processing unit which serves as a clustering device for a diverse set of datasets.