Metals (Nov 2019)

A Numerical Investigation of a Single-Shot in a DEM-FEM Approach to Shot Peening Simulation

  • Aghogho Bright Edward,
  • P. Stephan Heyns,
  • Schalk Kok

DOI
https://doi.org/10.3390/met9111183
Journal volume & issue
Vol. 9, no. 11
p. 1183

Abstract

Read online

Shot peening (SP) is a controlled and systematic process of surface treatment that has a large number of controllable process parameters that make its application highly challenging. It involves the shooting of small and hard metallic balls at a targeted surface, with the aim of enhancing the fatigue strength of the workpiece under unfavorable service conditions. The compressive residual stress (CRS) induced by this application is expensive to evaluate experimentally. This paper presents a numerical model of the impact of a single-shot on a metallic surface, with the aim to set the stage for a realistic multiple shots peening simulation. The approach proposed herein is a sequential Discrete Element-Finite Element (DE-FE) coupled simulation, based on the use of different types of coefficients of restitution (CoRs) with emphasis on the energetic CoR. The energetic CoR relates the shot/target contact forces to the fractional strain energy needed for localized plastic deformation of the near-surface layer in the workpiece. The generated results of the induced compressive residual stresses (CRS) and equivalent plastic strain (PEEQ) from single-shot simulations are validated with similar results from the literature. Our study clarifies the strain energy aspects of a single-shot impact responsible for the desired effects of CRS and PEEQ, thereby laying the groundwork for accurate and realistic modeling of the SP process via the DEM-FEM approach.

Keywords