Molecules (Jun 2024)
Screening the Optimal Probe by Expounding the ESIPT Mechanism and Photophysical Properties in Bis-HBX with Multimodal Substitutions
Abstract
DFT and TD-DFT were used in this article to investigate the effects of different substitutions at multiple sites on the photophysical mechanism of bis-HBX in the gas phase. Four different substitution modes were selected, denoted as A1 (X=Me, Y=S), A2 (X=OMe, Y=S), B1 (X=Me, Y=NH), and C1 (X=Me, Y=O). The geometric parameters proved that the IHBs enhanced after photoexcitation, which was conducive to promote the ESIPT process. Combining the analysis of the PECs, it was revealed that the bis-HBX molecule underwent the ESIPT process, and the ease of the ESIPT process was in the order of A1 > A2> B1 > C1. In particular, the TICT process in A1 and B1 promoted the occurrence of the ESIPT process. In addition, the IC process was identified, particularly in C1. Meanwhile, the calculation of fluorescence lifetime and fluorescence rate further confirmed that A1 was the most effective fluorescent probe molecule. This theoretical research provides an innovative theoretical reference for regulating ESIPT reactions and optimizing fluorescent probe molecules.
Keywords