Remote Sensing (Apr 2022)

Development of a UAV-Based Gamma Spectrometry System for Natural Radionuclides and Field Tests at Central Asian Uranium Legacy Sites

  • Christian Kunze,
  • Benedikt Preugschat,
  • Robert Arndt,
  • Felix Kandzia,
  • Benjamin Wiens,
  • Sven Altfelder

DOI
https://doi.org/10.3390/rs14092147
Journal volume & issue
Vol. 14, no. 9
p. 2147

Abstract

Read online

Uranium mining and processing had been widespread in Central Asia since the mid-1940s. However, with the establishment of the newly independent states in the 1990s, many of the former uranium mining and processing facilities and their associated wastes (dumps and tailings) were abandoned and have since posed a threat to the environment. The fact that the sites were left behind without proper remediation for a long time has led to the uncontrolled spread of radioactive and toxic contaminants in the environment due to landslides or flooding. Knowledge of the exact location of some waste facilities was lost as a result of social disruptions during the 1990s. In order to assess radiological risks and plan and implement adequate, sustainable, and environmental remediation measures, the radiological situation at the uranium legacy sites must be repeatedly mapped with the best possible accuracy in terms of both sensitivity and spatial resolution. In this paper, we present the experimental use of an unmanned aerial vehicle (UAV) equipped with gamma spectrometry systems as a novel tool for mapping, assessing, and monitoring radioactivity at sites affected by uranium mining and processing and other activities related to enhanced natural radioactivity. Special emphasis is put on the practical conditions of using UAV-based gamma spectrometry in an international context focusing on low- and medium-income countries. Challenges and opportunities of this technology are discussed, and its reliability and robustness under field conditions are critically reviewed. The most promising future application of the technology appears to be the radiological monitoring, institutional control, and quality assurance of legacy sites during and after environmental remediation. One-off administrative and logistical challenges of the technology are outweighed by the significant amount of time and cost saved once a UAV-based gamma spectrometry survey system is set up.

Keywords