AIP Advances (Sep 2022)
Structural, electrical, and magnetic properties of Ce and Fe doped SrTiO3
Abstract
Here, we report on the structural, vibrational phonon, electrical, and magnetic properties of undoped strontium titanate SrTiO3, Ce doped Sr1−xCexTiO3, and (Ce, Fe) co-doped Sr1−xCexTi1−yFeyO3 samples synthesized through solid state reaction route. The Rietveld refined powder x-ray diffraction analysis confirmed the cubic Pm-3m phase in our as-synthesized samples. We observed grain size reduction in SrTiO3 from scanning electron micrographs due to the incorporation of Ce and Fe dopants. The sample purity in terms of chemical species identification has been confirmed from energy-dispersive x-ray spectroscopy. The characteristic phonon modes in our samples are identified using room temperature Raman spectroscopy and benchmarked against existing relevant experimental observations. The incorporation of Ce and Fe as substitutional dopants in SrTiO3 unit cell was confirmed from the absence of absorption at 480, 555, 580, and 1635 cm−1 band in Fourier transform infrared spectra. The 3% Ce doping in Sr0.97Ce0.03TiO3 sample may have induced ferroelectric order, whereas the undoped SrTiO3 (STO) revealed lossy paraelectric nature. In the case of (Ce = 3%, Fe = 10%) co-doped Sr0.97Ce0.03Ti0.90Fe0.10O3 sample, we observed ferromagnetic hysteresis with orders of magnitude enhancement in remnant magnetization and coercivity as compared to undoped STO sample. This long range robust ferromagnetic order may have originated from F-center mediated magnetic interaction.