Applied Sciences (May 2023)
Development of a New Eye Movement Measurement Device Using Eye-Tracking Analysis Technology
Abstract
Smooth pursuit eye movements and saccadic eye movements are vital for precise vision. Therefore, tests for eye movement are important for assessing nervous or muscular diseases. However, objective measurements are not frequently performed due to the need for a polygraph system, electrodes, amplifier, and personal computer for data analysis. To address this, we developed an all-in-one eye-movement-measuring device that simultaneously presents visual stimuli, records eye positions, and examines its feasibility for evaluating eye movements. This device generates stimulus that induces eye movements and records those movements continuously. The horizontal or vertical eye movements of 16 participants were measured at various visual target speeds of 20–100 deg/s. The maximum cross-correlation coefficient (rho max) between the eye and visual target positions was used as an index of eye movement accuracy. A repeated-measures multi-way analysis of variance was performed, with the main effect being that rho max significantly decreased as the visual target speed increased. The average (±standard deviation) rho max values across all velocities were 0.995 ± 0.008 and 0.967 ± 0.062 in the horizontal and vertical directions, respectively, and were significantly higher for horizontal eye movements than for vertical eye movements. Moreover, rho max and saccadic frequency were significantly correlated for the slowest and fastest visual target motions. These suggest that our device enables accurate measurements of eye movements. We believe our new measurement device can be applied clinically for easily and objectively evaluating eye movements.
Keywords