Bulletin of the National Research Centre (Jul 2019)

Molecular genetic studies on abiotic stress resistance in sorghum entries through using half diallel analysis and inter-simple sequence repeat (ISSR) markers

  • Rasha Sabry Tawfik,
  • Almoataz Bellah Ali El-Mouhamady

DOI
https://doi.org/10.1186/s42269-019-0155-1
Journal volume & issue
Vol. 43, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Water deficit stress is considered as one of the most important environmental stresses which is more harmful to strategic crops, as it reduces the final crop yield by up to 40%. Therefore, the aim of this research is to evaluate some promising and superior sorghum entries for water stress tolerance and determine the most agro-morphological parameters and reasons responsible for drought tolerance in this regard. Results Fifteenth sorghum genotypes (five parents and their ten F1 crosses resulting from half diallel analysis) were used in this investigation under two levels of irrigation (normal and drought experiment). The recent genotypes were estimated through some physiological parameters related to water stress tolerance in sorghum; besides that, eight inter-simple sequence repeat (ISSR) primers were used to identify among the five sorghum parents and the highest five crosses resistance to water deficit conditions depending on the data calculated from all studied traits under both conditions. The following genotypes P1, P2, P3, P1 × P2, P1 × P3, P2 × P3, P2 × P4, and P3 × P4 confirmed high resistance to water deficit conditions under the drought treatment compared with the control. This high resistance was affirmed through the calculated data for all studied traits. The ISSR profile analysis showed 151 fragments as taxonomic divisions among the ten sorghum genotypes (38 of them were monomorphic and 113 polymorphic with 74.83% polymorphism). Conclusion The entries (P1, P2, P3, P1 × P2, P1 × P3, P2 × P3, P2 × P4, and P3 × P4) were succeeded in achieving the highest concept of water deficit resistance under both conditions. Therefore, this work will be the nucleus for producing resistant sorghum varieties for drought stress in the future.

Keywords