Viruses (Mar 2023)

The Lytic Activity of Bacteriophage ZCSE9 against <i>Salmonella enterica</i> and Its Synergistic Effects with Kanamycin

  • Abdallah S. Abdelsattar,
  • Mohamed Atef Eita,
  • Zainab K. Hammouda,
  • Shrouk Mohamed Gouda,
  • Toka A. Hakim,
  • Aghapy Yermans Yakoup,
  • Anan Safwat,
  • Ayman El-Shibiny

DOI
https://doi.org/10.3390/v15040912
Journal volume & issue
Vol. 15, no. 4
p. 912

Abstract

Read online

Salmonella, the causative agent of several diseases in humans and animals, including salmonellosis, septicemia, typhoid fever, and fowl typhoid, poses a serious threat to global public health and food safety. Globally, reports of therapeutic failures are increasing because of the increase in bacterial antibiotic resistance. Thus, this work highlights the combined phage–antibiotic therapy as a promising approach to combating bacterial resistance. In this manner, the phage ZCSE9 was isolated, and the morphology, host infectivity, killing curve, combination with kanamycin, and genome analysis of this phage were all examined. Morphologically, phage ZCSE9 is a siphovirus with a relatively broad host range. In addition, the phage can tolerate high temperatures until 80 °C with one log reduction and a basic environment (pH 11) without a significant decline. Furthermore, the phage prevents bacterial growth in the planktonic state, according to the results of the time-killing curve. Moreover, using the phage at MOI 0.1 with kanamycin against five different Salmonella serotypes reduces the required antibiotics to inhibit the growth of the bacteria. Comparative genomics and phylogenetic analysis suggested that phage ZCSE9, along with its close relatives Salmonella phages vB_SenS_AG11 and wksl3, belongs to the genus Jerseyvirus. In conclusion, phage ZCSE9 and kanamycin form a robust heterologous antibacterial combination that enhances the effectiveness of a phage-only approach for combating Salmonella.

Keywords