Atmosphere (Oct 2020)

Investigation of Marine Wind Veer Characteristics Using Wind Lidar Measurements

  • Zhenru Shu,
  • Qiusheng Li,
  • Yuncheng He,
  • Pak Wai Chan

DOI
https://doi.org/10.3390/atmos11111178
Journal volume & issue
Vol. 11, no. 11
p. 1178

Abstract

Read online

A proper understanding of marine wind characteristics is of essential importance across a wide range of engineering applications. While the offshore wind speed and turbulence characteristics have been examined extensively, the knowledge of wind veer (i.e., turning of wind with height) is much less understood and discussed. This paper presents an investigation of marine wind field with particular emphasis on wind veer characteristics. Extensive observations from a light detection and ranging (Lidar) system at an offshore platform in Hong Kong were examined to characterize the wind veer profiles up to a height of 180 m. The results underscored the occurrence of marine wind veer, with a well-defined two-fold vertical structure. The observed maximum wind veer angle exhibits a reverse correlation with mean wind speed, which decreases from 2.47° to 0.59° for open-sea terrain, and from 7.45° to 1.92° for hilly terrain. In addition, seasonal variability of wind veer is apparent, which is most pronounced during spring and winter due to the frequent occurrence of the low-level jet. The dependence of wind veer on atmospheric stability is evident, particularly during winter and spring. In general, neutral stratification reveals larger values of wind veer angle as compared to those in stable and unstable stratification conditions.

Keywords